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ABSTRACT 

The problem of designing and flying a trajectory for successful recovery of a reusable launch 

vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is 

approximated by a simplified three degree of freedom non-linear model. A baseline trajectory 

design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned 

using a simple genetic algorithm. Preliminary results show that the performance of the overall 

system i s  shown to  improve with genet ic  a lgori thm tuning.  
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1. NOMENCLATURE 
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heading angle with respect to runway (deg) 

bank angle (deg) 

flight path angle (deg) 

gravity constant = 32.174 fth2 

forward velocity (Ws) 

vehicle cg distance from runway threshold (ft) 

vehicle cg distance from runway centerline (ft) 

vehicle cg height above runway (ft) 

vehicle z axis normal acceleration (g) 

drag force (lbf) 

drag coefficient 

atmospheric density (sluglft3) 

vehicle frontal area (ft*) 

vehicle mass (slugs) 

vehicle energy divided by weight (ft) 

XHAC value for maximum energy approach 

Nominal value for Xmc 

X runway coordinate of baseline Auto Landing Interface (ALI) point 

X runway coordinate for Minimum Entry point approach 

X runway coordinate of heading alignment cone center 

radius of heading alignment turn (ft) 

heading alignment cone 

Energy over weight for minimum entry point approach 

Energy over weight for nominal approach 
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The following acronyms are used repeatedly in describing the 

Fuzzy Logic input and output membership functions: 

LN Large Negative 

MN Medium Negative 

SN Small Negative 

Z Zero 

SP Small Positive 

MP Medium Positive 

LP Large Positive 

Energy over weight for small s-turn approach 

Energy over weight for medium s-turn approach 

Energy over weight for large s-turn approach 

expected velocity at HAC initiation (Ws) 

average bank angle during HAC turn (deg) 

- 
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2. INTRODUCTION 

NASA is currently studying the application of advanced and intelligent control methodologies to 

the successful recovery of Reusable Launch Vehicles (RLVs). In recent years several authors 

have contributed to this work. Hanson [7,8] provides a fairly comprehensive overview of the 

work currently funded through NASA Marshall. 

The return to earth consists of three phases--Entry, Terminal Area Energy Management 

(TAEM), and Approach and Landing. Entry is defined as taking the spacecraft from 190,000 ft 

to 90,000 ft above mean sea level. TAEM takes the spacecraft from 90,000 ft above mean sea 

level and Mach 3 to 10,000 ft and Mach 0.5 and aligns the craft with extended runway centerline. 

Approach and Landing takes the vehicle from 10,000 f t  to wheel stop on the runway. The Space 

Shuttle is programmed to fly all three phases of flight automatically, and under normal 

circumstances the astronaut-pilot takes manual control only during the Approach and Landing 

phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and 

Landing have been developed over the past 30 years. They are computationally efficient, and 

based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding 

return trajectory is planned prior to the mission, and only minor adjustments are made during 

flight for perturbations in the vehicle energy state. 

In order to provide more flexibility during recovery, especially in the case of off nominal energy 

conditions at Entry / TAEM interface or control surface failures, several authors have been 

investigating the application of advanced control technologies to autonomously design the 

trajectory in real time. 

The bulk of work published to date deals primarily with the approach and landing phase of flight. 

Ref [ I ]  focuses on the auto landing trajectory where changes in heading angle are small and the 
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distance to runway threshold is monotonically decreasing. Ref [23 proposes new methods to 

assess the robustness of auto landing trajectories. Ref [4] shows results for the subsonic portion 

of TAEM. Ref [6] uses an adaptive-critic neural network approach to optimize trajectory design 

for the approach and landing phase of flight. Once again, the mathematics used are only 

applicable when the heading changes are small and the distance to the runway is monotonically 

decreasing. 

The goal of this work is to take a set of baseline fuzzy inference systems designed for 

autonomous trajectory design and guidance [3], and tune the internal parameters using a simple 

genetic algorithm. Results are shown for the supersonic and subsonic portions of TAEM. 

Trajectory design and guidance during TAEM has been challenging for most approaches because 

of the large changes in heading angle that are allowed during this phase, and the large changes in 

aerodynamic drag during transonic flight. 

3. SIMPLIFIED PLANT MODEL 

An overly simplified plant model was used for all tuning simulations in this work. The details 

from our previous work [3] are repeated here for completeness. The simplified model of a gliding 

aircraft can be found by treating the vehicle as a point mass, and applying Newton's second law 

in the aircraft y-z and x-z planes separately. Considering the y-z plane first, and assuming no 

acceleration in the z direction, Newton's second law renders 

Leos$ - mg = 0 

Which can be solved for lift L yielding 
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In they direction we find 

V 2  Lsincp = m- 
r 

(3) 

Eq. 2 is then substituted for lift in Eq. 3, resulting in an expression for turn radius that is 

independent of aircraft size or type. 

. 2  v2 
Now substituting w r = - in Eq 4 and solving for turn rate I$, results in the following: 

Y 

+=-tan@ 8 
V 

In the x-z plane first show the force balance along the aircraft z axis 

V 2  L - mgcos y = m- = NZm 
Y 

Solving for turn radius in the vertical plane yields 

mV2 
Y =  

L - mgcos y 

Solving Eq 6 for normal acceleration Nz renders 

( 5 )  

(7) 
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2 v' Now substitute Eq 7 and 9 r = - into Eq 6 and solve for y 
r 

(9) 

Finally, substituting Eq 8 into Eq 9 will eliminate lift and thus make the model independent of 

specific aircraft aerodynamic properties. 

NZ 
y = T -  

The force-acceleration balance along the aircraft x axis results in an equation for forward velocity. 

Where drag D is given by 

1 
2 

D = -pv2scD 

By definition of heading angle and flight path angle, the aircraft position in x-y-h space is 

governed by Eqs. (1 3- 15). 

x = vcos 

y = Vsin ly 
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h = Vsiny 

Atmospheric density is determined from the exponential model: 

-6 4.258 
(O.OO23784722(1- 6.8789 x 10 h)  h < 35332 

\ I 

h 2 35332 = IO.OOO72674385e -4.78~10-~ (h-35332) 

Eqs. ( 5 ) ,  (lo), (1 l), and (13-16) provide a generic aerospace vehicle model where only the drag 

coefficient is aircraft specific. The coefficient of drag was taken to be a function of Mach number 

only and was approximated by the zero angle of attack portion of the drag table directly from a 

high-fidelity non-linear simulation of the X-33 Venturestar. These drag coefficient data are 

shown in Fig. 1. 

Induced drag was ignored which is probably the biggest weakness in the simplified model. The 

resulting model was programmed in Matlab / Simulink to serve as a test bed for rapid 

prototyping, tuning and testing of fuzzy inference systems for trajectory design and guidance. 

4. TRAJECTORY DESIGN AND GUIDANCE SYSTEM 

The basic connections between plant, trajectory designer, and guidance are shown in Fig. 2. 

During the low fidelity simulations used to tune the trajectory designer and guidance systems in 

this work, the trajectory designer provides a desired ground track and vertical path, and the 

guidance system provides the appropriate bank angle and negative z axis acceleration to intercept 

and maintain the desired path. Since the model is simplified to three degrees of freedom, the 

vehicle is assumed to follow the guidance commands immediately and perfectly, that is, there are 

no dynamics causing actual vehicle attitude to differ from commanded attitude. 
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The baseline trajectory design and guidance fuzzy inference systems were developed based on 

existing Shuttle TAEM guidance, and instrument approach procedure techniques used by 

military pilots[3]. The ground path in this work is essentially the same as current Shuttle 

guidance when using a straight-in approach. That is, at Entry / TAEM interface, the vehicle will 

turn in the shortest direction to a heading that will intercept the Heading Alignment Cone (HAC) 

in a tangent fashion. The craft then flies in a straight line until intercepting the HAC. HAC 

interception should occur as the craft reaches subsonic speeds. The HAC is so named, because 

an aircraft flying a constant bank descending turn with decreasing airspeed will actually describe a 

decreasing radius helix, hence the surface of a cone. In this work, the HAC is a constant radius 

turn and could be aptly renamed 'Heading Alignment Cylinder'. Once the spacecraft is within 45 

degrees of runway heading and the distance to extended runway centerline is decreasing, the bank 

guidance system switches to a mode that will intercept extended runway centerline. The basic 

ground track in shown in Fig. 3. 

4.1 Traiectorv Designer 

The trajectory designer is a fuzzy inference system with two inputs and three outputs. The 

inputs are the quotient of energy over predicted downrange distance to ALI Ew /X,,, , and an 

integer denoting the degree of control surface health. Energy is computed as the sum of kinetic 

and potential energy divided by weight, and has dimensions of length. 

V 2  EW =h+- 
2g 

Distance to ALI is computed using the expected ground track from the previous design iteration. 

The calculations are identical to those used in Shuttle TAEM guidance. The membership 

functions for Ew /RALI are tunable. The trajectory designer outputs are described next. 
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Two parameters that determine the ground track are the heading alignment turn radius (Y,,), 

and position from the runway threshold ( XHAc) .  The output membership functions for these 

parameters will be tunable. 

The vertical trajectory is constrained by initial and final conditions. The spacecraft must reach 

the Auto-Land Interface (ALI) at approximately 10,000 Et above the runway, 20,000 ft from the 

runway threshold at a flight path angle depressed 30 deg from horizontal. To maintain continuity 

throughout the trajectory, the vertical path is defined as a cubic polynomial which intersects the 

ALI at the appropriate altitude and slope. 

Where XAL, is the predicted ground track distance to ALI and ~ A L I  is the desired height at ALI 

and c3 is an adjustable parameter allowing real-time updates of the reference vertical path to 

match off-nominal energy conditions. The trajectory designer will also determine c3 through a 

fuzzy decision with tunable membership functions. 

4.2 Bank Guidance Commands 

The bank guidance commands are generated by a fuzzy inference system with seven inputs 112 

rules, and a single output. The bank output command is defined as a proportion of available 

bank. Available bank is limited by the degree of control surface health. The conventional sub- 

phases of TAEM, which are acquisition, HAC turn, and pre-final [ll], are used to limit the 

number of inputs which must be considered during a single iteration. During the acquisition turn, 

the only input considered is turn angle to the HAC center, AYaq which is partitioned into five 

membership functions. In this phase, the fuzzy inference system acts as a proportional 

controller with five rules connected to the five output membership functions. The acquisition 

turn ends when the spacecraft is pointed within one-half degree of the heading that will take it 
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tangent to the HAC, or when it reaches a range of 1.85 HAC radii from the HAC center, to 

facilitate intercepting the HAC arc. 

During the HAC turn, the inputs which are considered are turn radius error and bearing to the 

HAC center. Bearing to the station is divided into thirteen membership functions. Turn radius 

error is defined as the quotient of actual turn radius over desired turn radius, and is divided into 

seven membership functions. Eighty-nine rules are used in this phase. The rules are based on the 

techniques for intercepting and flying a TACAN arc contained in Air Force Manual 11-217 

volume 1 .[ 131 The bearing, turn radius error and bank angle membership functions were tunable, 

and were tuned using a simulation of the HAC interception and maintenance phase only. 

For transition to final approach, the distance to extended runway centerline, and rate of change of 

this distance are taken as tunable inputs. Proportion of available bank angle is the output, but is 

not tuned during this phase of flight. 

4.3 Negative &Acceleration Guidance 

The negative z-axis acceleration guidance has four inputs. Dynamic pressure, and Mach number 

are not tunable, since they represent the stall and structural limits of the spacecraft. Altitude 

error and vertical velocity error are considered tunable. The output, which is the guidance 

portion of negative z acceleration and ranges from -0.6g to 0.6g is considered tunable, however, 

as discussed in the sequel, the membership functions are constrained to this predetermined limit. 

5. GENETIC ALGORITHM TUNING OF MAMDANI TYPE FUZZY 

CONTROLLERS 

Genetic algorithms have been used to tune fuzzy logic controllers of the Mamdani type 

for several years. Previous merging of genetic algorithms and fuzzy logic has provided well-tuned 
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low-order controllers for satellite docking control and chemical engineering [SI examples. Other 

methods of adaptive fuzzy control use the backpropagation algorithm, or tuning based on 

gradient information, and require that the controller use differentiable membership functions 

(MFs).[l2] GAS provide a viable method of adapting fuzzy logic controllers for optimum 

performance even when the membership functions of the controller are not differentiable (i.e. 

triangles or trapezoids). 

Prior to genetic algorithm tuning, a specific fuzzy logic architecture is chosen. That is, a 

controller with at least marginally adequate performance should be known, and coded as a 

baseline. The human control designer will thus know an appropriate universe of discourse for 

input and output variables, and a possible partitioning of the input and output spaces, including 

number, and shape of membership functions. 

In this work, adjustable parameters of the controller are coded as unsigned binary integers. 

Trapezoidal membership functions are reduced to three parameters; mean, support and spread. 

These parameter definitions are illustrated in Fig. 4. 

Triangular membership functions require only the mean and spread to be coded. This convention 

was used successfully by Linkens and Nyongesa.[ 101 This particular coding scheme is chosen so 

that, when the genetic algorithm produces randomly selected mutations, the shape and 

monotonicity of the membership functions will be preserved. Thus, the inference engine will give 

valid control outputs regardless of what numbers the GA picks for a particular membership 

function. The mean of each membership function is coded as a proportion of the expected 

universe of discourse. That is: 

(2" - 1) b = [  P -  Pmin 

Pmax -Pmin 

Where P,, and Pfin define the limits of the relevant universe of discourse. P is the mean as a 

real number, and b is the mean coded as an integer between 0 and 2" - 1. Spread and support are, 
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by definition, positive quantities, thus, Eq. 18 is used to code these with Pfi,=O. Each integer b 

is then coded as a binary string using a standard decimal to binary function. 

In order to initialize the search, a controller based on human knowledge was used as the 

baseline [3]. A population size of 30 was chosen, in order to keep the computation time required 

for propagation of a single generation within reason. This population size is supported by the 

findings of Linkens and Nyongesa, where population sizes of 20 to 40 were used on bit strings of 

length 2080. [lo] 

5.1 Codinp of Bank guidance Parameters 

The total number of membership functions for bank guidance commands was seven for 

the turn radius error input, thirteen for the bearing to station input, and seven for the bank 

command output. Of these, turn radius error has three trapezoidal, and four triangular MFs, 

bearing has seven trapezoidal and six triangular, and bank command has MFs that are all 

triangular. Each membership function parameter (mean, support, and spread) was coded using 8 

bits. Counting three adjustable parameters for trapezoidal MFs, and two for triangular ones, we 

have 64 total parameters, and 512 total bits. The combined chromosome for a candidate 

controller is produced by concatenating the bit strings for individual parameters. 

The initial population was filled by taking random mutations of the baseline controller. 

Each new string had 52 alleles or approximately 10% altered from the baseline. Note these 

alterations are completely random and no insight to the effect on the fuzzy inference system 

parameters is required for successful adaptation. 

5.2 Measure of Performance and Fitness Levels 

The current example is one of tracking control. that is, the objective of the fuzzy 

inference system is to produce actuator commands that will cause the system to track a 

prescribed trajectory. Thus, a quadratic cost function based on tracking error is used as the 

measure of controller performance. 
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In order to measure performance, each candidate bit string is decoded into the corresponding 

fuzzy logic controller. This is done by stripping eight bits at a time from the chromosome, and 

associating those eight bits with the corresponding controller parameters. The eight bit binary 

string is then decoded to an integer value b. The corresponding real number parameter P is then 

found by inverting Eq. 18. For spread and support parameters, Pfi,,  in Eq. 18 is replaced with 

zero. 

Each candidate controller is then used for a simulation of part of the gliding trajectory of 

the RLV. Control commands are updated every 0.5s, and are held, during a contiuous simulation 

of the system dynamics. The tracking error is also computed every 0.5s. The simulation is run 

until the vehicle reaches a goal, or a time limit is reached. In general, this time limit is set to twice 

the time required by the baseline controller to reach the goal. 

Fig. 5 illustrates tracking error performance for the bank command guidance of the X-33 

simulator. 

Since GAS seek to maximize the 'fitness level', each candidate controller was assigned a 

fitness level equal to the difference between the maximum cost candidate controller cost divided 

by the maximum cost. That is 

Typical J values for the baseline controller were O( 101 1). This scaling gave values off such that 

0 I fi 5 1 V i. 

5.3 ImDlementation of the Simple Genetic Algorithm 

Once fitness levels are established the next generation of chromosomes is produced by the 

simple genetic algorithm with the following specific characteristics. 

1. The mating pool is selected using a biased roulette wheel. 
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2. Parent strings are paired randomly 

3. Probability of crossover is 1, and crossover sites are chosen randomly. In particular, 

this means that the GA operates on the entire chromosomes with no regard to where bit 

substrings for individual parameters begin and end. 

4. Proportion of mutation was set at 0.34%. That is, mutation is performed on 52 

randomly chosen of the total 15360 alleles of each new generation. This is the most significant 

departure from the simple GA as presented by Goldberg [5]. Goldberg uses a mutation 

probability which is then applied to each individual allele, to determine which ones are altered 

during the mutation step. 

Since membership function means are allowed to be moved anywhere in the universe of 

discourse, the rule base may be effectively changed by this type of adaptation. That is, although 

the linguistic names associated with various membership functions will not change, the crisp 

input / output values associated with the linguistic names are allowed to change. Thus, for 

instance, the membership function for 'Large Positive', may actually end up to the left of the 

membership function for 'Zero', thus resulting in an effective rule change. 

This is illustrated in Figs. 6-1 1. 

6.  RESULTS 
The Bank and Negative Z Axis acceleration fuzzy inference systems were tuned using the 

procedure described above. The bank guidance commands are essentially split into two separate 

fuzzy inference systems, one for the HAC turn, and one for transition to final approach. Fig. 5 

shows the performance improvement of the HAC turn phase due to GA tuning. After tuning the 

input and output membership functions for the HAC turn phase, the GA was used to tune the 

input membership functions of the transition to final approach fuzzy system. In this case, the 

inputs are distance from extended runway centerline, and runway y coordinate component of 
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horizontal velocity. Figure 12 below shows the improvement in transition to final aproach 

performance. 

The bank guidance commands were tuned for a right HAC turn and right turn to final only. Thus, 

after tuning, the input and output membership functions which were not exercised during the 

tuning were set symmetric to the ones which were exercised. That is, for example, the LN, MN, 

ans SN membership functions shown 'scrunched' together to the left of Figure 11, were reset to 

reflect the values of LP, MP, and SP, only negative. 

Fig. 13 shows the improvement in tracking the planned vertical trajectory as a result of GA 

tuning of the Negative Z Axis acceleration fuzzy guidance. 

Once the guidance commands had been tuned, the trajectory design fuzzy inference system was 

tuned using the simple GA. In this case, in order to design for the widest possible energy 

envelope, the simulation was run for four different initial conditions for each candidate fuzzy 

system. The four initial conditions are shown in Table 1. 

The cost function for each simulation was taken as the sum of squared error in four dimensions 

from the desired end state. The desired end state is shown in Table 2. 

The fourth dimension is difference in final heading and runway heading in degrees. The errors in 

the three Cartesian dimensions are computed in feed100 before squaring so that error in final 

heading angle has approximately the same amount of influence in the final cost. Thus, the cost 

for a single simulation is 
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Since four simulations are computed to determine the performance of each candidate trajectory 

designer the cost is taken as the sum of costs for the four simulations. Table 3a shows a 

comparison of the cost for the baseline controller and how the cost is minimized during tuning 

with the GA using a sum of cost criterion. Note that the genetic algorithm seeks to minimize the 

sum of the four costs shown, therefore, the cost for initial condition three is allowed to increase 

as long as the total cost decreases. Also, cost for initial condition four is diminished but still 

rather large after 45 generations of adaptation. Figure 14 shows the corresponding ground track 

taken by the vehicle when using the trajectory designer from this adaptation. It is obvious that 

for initial conditions three and four, the vehicle is not in a good position to interecept final 

approach. In order to provide for success on all four initial conditions, we also ran the adaptation 

with cost defined as the max cost over the four trials. Table 3b shows how the max cost evolves 

over 42 generations. Note that the adaptation seeks only to reduce the max cost, so after 24 

generations, all of the numbers are rather large, and the trajectory designer does not reach the 

desired end state for any of the initial conditions, thus, we prefer the sum cost criterion. 

7. CONCLUSIONS 

In this work, a simple genetic algorithm has been employed to tune the parameters of several 

fuzzy inference systems used in trajectory design and guidance of a reusable launch vehicle. The 

Terminal Area Energy Management portion of flight is considered. Such tuning has provided a 

way to optimize the design of fuzzy logic controllers for this application. Although the GA was 

only allowed to adjust the membership functions, the association of crisp input / output values 

with linguistic names used in the inference engine could change, resulting in an effective rule 

change. After tuning, the spacecraft is flown to a prescribed end point with a greater degree of 

precision for widely varied initial conditions. The result is an optimized trajectory design and 

guidance algorithm which has been demonstrated to control a simplified model of the plant from 

Entry / TAEM interfact to auto-land interface with a great degree of success. 
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Figure 2: Trajectory Design and Guidance Connections 
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Table 1 : Initial Conditions for Trajectory Designer Training 

Variable IC 1 IC 2 IC 3 IC 4 

x (ft) -30614 -31038 -30587 -30974 

Y (ft) 239900 213840 239690 2786 10 

ly (deg) -64 -94 -124 -94 

Y (fw -2966 -2958 -2945 -2960 

h (ft AGL) 96500 87880 79480 87880 

v (W 3000 3000 3000 3000 

Y (rad) -0.1076 -0.1076 -0.1076 -0.1076 

4 (PSf) 133.6 213.8 319.3 213.8 

Mach 3.02 3.04 3.06 3.04 

h (WS) -309 -268 -249 -258 

Table 2: Desired End State 

Coordinate Desired Value 

Runway X Position -20000 (ft) 

Runway Y Position 0 (ft) 

Altitude 10000 (ft AGL) 

Heading Aligned with Runway 
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Table 3a: Evolution of Cost Function for Trajectory Designer (sum cost criterion) 

Training Cost for IC 1 Cost for IC 2 Cost for IC 3 Cost for IC 4 

None 136.9383 292.7708 385.0947 288.4938 

14 generations 35.5167 3 0.7042 455.3514 276.9252 

28 generations 27.2860 28.6652 461.0296 264.2302 

45 generations 27.3110 28.63 18 457.6460 264.41 93 

Table 3b: Evolution of Cost Function for Trajectory Designer (max cost criterion) 

Training Cost for IC 1 Cost for IC 2 Cost for IC 3 Cost for IC 4 

None 136.9383 292.7708 3 85.0947 288.4938 

2 1 generations 33 1.9659 175.3205 260.7934 221.481 7 

42 generations 317.3839 199.2 199 260.30 12 220.6867 
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